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Structure of the Time Projection for Stopping Times
in von Neumann Algebras
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We give an explicit formula for the time projection in an arbitrary von Neumann algebra
from which all its basic properties can be easily derived. The analysis of the situation
when this time projection is a conditional expectation is also performed.
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1. INTRODUCTION

The aim of these notes is to investigate some properties of the time projection
for a stopping time in a von Neumann algebra. This is done solely by using an
explicit formula for the projection, without any reference to stochastic integra-
tion. In particular, we obtain simple conditions for stopping a noncommutative
martingale. The problem of when the time projection can be treated as a condi-
tional expectation is also addressed. Its solution, known in the case of the Clifford
probability gauge space, is thus generalized to a fairly general context.

2. PRELIMINARIES AND NOTATION

Throughout the paper A will denote a von Neumann algebra acting in a
Hilbert space H with a cyclic and separating vector �. ω will stand for a (normal
faithful) vector state onA induced by �. Let (At : t ≥ 0) be a filtration ofA, i.e. an
increasing net of von Neumann subalgebras ofA such thatA = A∞ := (∪t≥0At )′′.
We assume that there are normal conditional expectations Et , t ≥ 0, from A
onto At leaving ω invariant. It follows easily (cf. [Barnett and Thakrar, 1987,
Proposition 1.2]) that if we define

Pt (x�) = (Et x)� , x ∈ A,
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then Pt is a projection from H onto Ht = At�, consequently, Pt ∈ A′
t ; we have

also EtEs = EsEt = Es∧t . In what follows we shall be concerned with the “time
parameter” t belonging either to the interval [0,+∞) or to the interval [0, u],
where 0 < u ≤ +∞. Accordingly, we adopt the following definition. A (quan-
tum, noncommutative) stopping time τ is an increasing net (qt ), t ∈ [0,+∞) or
[0,+∞] of projections such that qt ∈ At , q0 = 0, and ∨t≥0qt = 1 in the case
t ∈ [0,+∞) or q∞ = 1 in the case t ∈ [0,+∞]. The definition above is a proper
generalization of the notion of the classical (commutative) stopping time (cf. Bar-
nett and Lyons, 1986; Barnett and Thakrar, 1987, 1990; Barnett and Wilde, 1990
for more information). A fairly general theory of stopping a noncommutative pro-
cess has so far been achieved only for martingales. Let us briefly recall its main
points here.

A martingale in H is a process (ξ (t): t ≥ 0) such that ξ (t) ∈ Ht and for each
s, t ≥ 0, s ≤ t ,

Psξ (t) = ξ (s).

If we allow t ∈ [0,+∞] then it follows that there is ξ (=ξ (∞)) such
that ξ (t) = Ptξ ; such martingales are called closed, and it is not diffi-
cult to see that the following conditions are equivalent: (i) (ξ (t)) is closed
(ii) supt ‖ξ (t)‖ < +∞ (iii) there exists limt→∞ ξ (t) (cf. [Barnett and Wilde, 1990,
Proposition 1.1]).

Now stopping (ξ (t)) consists in the following procedure. For interval
[0, u] (u = +∞ if (ξ (t)) isclosed) we consider its partition θ = {0 = t0 < t1 <

. . . < tn = u}, and form the sum

ξτ (θ) =
n∑

i=1

(qti − qti−1 )ξ (ti). (1)

Taking the limit of the net {ξτ (θ): θ−partition} as θ refines, gives us the stopped
element ξτ (u), which is all we need if u = +∞; however, if u < +∞ it seems
reasonable to define ξτ as limu→∞ ξτ (u).

The existence of the two limits above is by no means obvious. It turns out that
while the limit in (1) does exist it need not be so with the other one, and thus we
are guaranteed only of the possibility of stopping a closed martingale. To analyze
ξτ (θ) observe that the martingale property yields

ξ (ti) = Pti ξ (u), i = 1, . . . , n,

and hence

ξτ (θ) =
n∑

i=1

(qti − qti−1 )Pti ξ (u). (2)
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Put

Mτ (θ)(u) =
n∑

i=1

(qti − qti−1 )Pti .

Then Mτ (θ)(u) is a projection inH (recall that Pti ∈ A′
ti
, qti−1 , qti ∈ Ati ). It is easily

seen that the net {Mτ (θ)(u): θ−partition} decreases, so there exists limθ Mτ (θ)(u)
which we denote by Mτ (u) and call the time projection; it is also clear that

Mτ (u) =
∧
θ

Mτ (θ)(u).

Accordingly, we have by (2)

ξτ (u) = lim
θ

ξτ (θ) = lim
θ

Mτ (θ)(u)ξ (u) = Mτ (u)ξ (u).

If u = +∞ we shall write Mτ instead of Mτ (∞); note that this is the case con-
sidered in Barnett and Lyons (1986), Barnett and Thakrar (1990), Barnett and
Wilde (1990), and mainly in Barnett and Thakrar (1987). However, in Barnett and
Thakrar (1987) a more general setting that we have defined above is also taken
into account.

As a final remark let us observe that the definition of the time projection as well
as the results of the next section could be obtained for Haagerup’s L2(A, ω)-space
and the algebra A acting on it by left multiplication, especially in view of a spa-
tial isomorphism between the representations (A,H,�) and (A, L2(A, ω), h1/2

ω )
where h

1/2
ω is a cyclic and separating vector in L2(A, ω). The reasons for which

we have adopted a more traditional approach lie in Section 3. There we want to
treat the time projection, which is a projection in a Hilbert space, as a projection
in the algebra A, and passing from one to another is much more straightforward
in our original setup where we have a natural embedding of A into H given by
A � x → x� ∈ H.

3. REPRESENTATION OF THE TIME PROJECTION

In this section we analyze various properties of the time projection by means
of an explicit formula expressing it in terms of the Pt and qt .

Theorem 3.1. Let u ∈ (0,+∞]. Then

Mτ (u) =
∧
t≤u

(qu − qtP
⊥
t ). (3)

Proof: Take the partition θ0 = {0 = t0 < t1 = u}. We have

Mτ (u) ≤ Mτ (θ0) = (qt1 − qt0 )Pt1 = quPu ≤ qu. �
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Let ξ ∈ H, and assume that Mτ (u)ξ = quξ . For an arbitrary t ∈ [0, u] we
have

Mτ (u) ≤ (qt − q0)Pt + (qu − qt )Pu ≤ qu,

giving the equality

(qt − q0)Ptξ + (qu − qt )Puξ = quξ.

Applying qt to both sides yields

qtPtξ = qtξ. (4)

Conversely, if for each t ∈ [0, u] equality (4) holds, then for any s ≤ t we have,
applying qs to both sides of (4),

qsPtξ = qsξ,

and for any partition θ = {0 = t0 < t1 < . . . < tn = u}

Mτ (θ)(u)ξ =
n∑

i=1

(qti − qti−1 )Pti ξ =
n∑

i=1

(qti ξ − qti−1ξ ) = qtnξ − qt0ξ = quξ,

hence

Mτ (u)ξ = lim
θ

Mτ (θ)(u)ξ = quξ.

We have thus obtained equivalence of the following conditions:

(i) Mτ (u)ξ = quξ

(ii) for each t ∈ [0, u] qtPtξ = qtξ ,

or put in another way

(i′) [qu − Mτ (u)]ξ = 0
(ii′) for each t ∈ [0, u] qtP

⊥
t ξ = 0.

But condition (ii′) is equivalent to the equality(∨
t≤u

qtP
⊥
t

)
ξ = 0,

which means that the projections qu − Mτ (u) and ∨t≤uqtP
⊥
t have the same null

spaces, so they must be equal:

qu − Mτ (u) =
∨
t≤u

qtP
⊥
t .

Consequently,

Mτ (u) = qu −
∨
t≤u

qtP
⊥
t =

∧
t≤u

(qu − qtP
⊥
t ).
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Corollary 3.1. If u = +∞ then

Mτ =
∧
t≥0

(
q⊥

t + qtPt

)
. (5)

Indeed, we then have

q∞ − qtP
⊥
t = 1 − qtP

⊥
t = q⊥

t + qtPt ,

and for t = +∞
q⊥

∞ + q∞P∞ = 1,

giving

Mτ = Mτ (∞) =
∧

0≤t≤+∞

(
q∞ − qtP

⊥
t

) =
∧

0≤t≤+∞

(
q⊥

t + qtPt

)

=
∧

0≤t<+∞

(
q⊥

t + qtPt

)
.

Theorem 3.2. Let the set {Mτξ (t) : t ∈ [0,+∞)} be norm-bounded. Then the
martingale (ξ (t)) can be stopped and

ξτ = lim
t→∞ Mτξ (t).

Proof: Put

η(t) = Mτξ (t). (6)

�

For each s, t ∈ [0,+∞) we have

Ps

(
q⊥

t + qtPt

) =
{

Psq
⊥
t + Psqt = Ps for s ≤ t

Psq
⊥
t + qtPt for s > t

= (
q⊥

t + qtPt

)
Ps,

and from (5) we get

PsMτ = MτPs.

If s ≤ t , then

Psη(t) = PsMτη(t) = MτPsη(s) = Mτη(s) = η(s),

which shows that (η(t)) is a martingale, and since it is norm-bounded, we have
η(t) → η, as t → ∞, for some η ∈ H. From (6) we have

Mτ (t)η(t) = Mτ (t)Mτξ (t) = Mτ (t)ξ (t) = ξτ (t).
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Now

‖Mτ (t)η(t) − Mτη‖ ≤ ‖Mτ (t)[η(t) − η]‖ + ‖[Mτ (t) − Mτ ]η‖ ≤ ‖η(t) − η‖
+‖ [Mτ (t) − Mτ ]η‖ → 0,

since limt→∞ Mτ (t) = Mτ , consequently

ξτ (t) = Mτ (t)η(t) → Mτη.

But Mτη(t) = η(t), and thus Mτη = η, giving

ξτ = lim
t→∞ ξτ (t) = Mτη = η = lim

t→∞ Mτξ (t).

Observe that the result of the last theorem perfectly agrees with what we have
for a closed martingale where also

ξτ = Mτξ = lim
t→∞ Mτξ (t).

4. TIME PROJECTION AS A CONDITIONAL EXPECTATION

In this section we consider a question when the time projection can be treated
as a conditional expectation. A problem of this type was analyzed in Barnett and
Lyons (1986) for the Clifford probability gauge space and solved by using some
properties of the Clifford quantum stochastic integral. The solution we give here
works in the general context of an arbitrary von Neumann algebra; moreover it is
simple and does not employ any theory of stochastic integration.

Let τ = (qt : t ∈ [0,+∞]) be a stopping time, and let Mτ be the time
projection. Mτ can be treated as a conditional expectation if

Mτ (x�) = y�,

and the map Eτ : x → y is a conditional expectation. We then have

(Eτ x)� = Mτ (x�).

Put

Bτ = {x ∈ A: for each t ≥ 0 xqt = qtx} = A ∩ {qt : t ∈ [0,+∞]}′.
For any partition θ = {0 = t0 < t1 < . . . < tn = +∞} let

Aτ (θ) = {x ∈ A: xqti = qti x ∈ Ati , i = 0, 1, . . . , n},
and let

Aτ =
⋂
θ

Aτ (θ) = {x ∈ A: for each t ≥ 0 xqt = qtx ∈ At }.
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Theorem 4.1. Mτ |B is a normal faithful conditional expectation ontoAτ leaving
ω invariant.

Proof: For a partition θ = {0 = t0 < t1 < . . . < tn = +∞} define on Bτ the
map Eτ(θ ) by

Eτ(θ )x =
n∑

i=1

(qti − qti−1 )Eti x =
n∑

i=1

Eti ((qti − qti−1 )x)

=
n∑

i=1

(Eti x)(qti − qti−1 ), x ∈ Bτ .

�

For each t ∈ [0,+∞] we have tj−i ≤ t < tj with some j , so

qtEτ (θ)x = qt

j−1∑
i=1

(qti − qti−1 )Eti x + qt (qtj − qtj−1 )Etj x + qt

n∑
i=j+1

(qti − qti−1 )Eti x

=
j−1∑
i=1

(qti − qti−1 )Eti x + (qt − qtj−1 )Etj x,

and

(
Eτ (θ)x

)
qt =

j−1∑
i=1

(Eti x)(qti − qti−1 )qt + (Etj x)(qtj − qtj−1 )qt

+
n∑

i=j+1

(Eti x)(qti − qti−1 )qt =
j−1∑
i=1

(Eti x)(qti − qti−1 ) + (Etj x)(qt − qtj−1 ).

But for x ∈ Bτ

(qti − qti−1 )Eti x = Eti ((qti − qti−1 )x) = (Eti x)(qti − qti−1 ),

and

(qt − qtj−1 )Etj x = Etj x((qt − qtj−1 )x) = (Etj x)(qt − qtj−1 ),

which shows that

qt Eτ (θ)x = (
Eτ (θ)x

)
qt ,

i.e., Eτ (θ)x ∈ Bτ . Furthermore, for each j = 0, 1, . . . , n

qtj Eτ (θ)x =
j∑

i=1

(qti − qti−1 )Eti x =
j∑

i=1

(Eti x)(qti − qti−1 ) = (Eτ (θ)x)qtj ,
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showing that Eτ (θ)x ∈ Aτ (θ). For x ∈ Aτ (θ) we have Eti x = x, hence

Eτ (θ)x +
n∑

i=1

(qti − qti−1 )x = x

which means that Eτ (θ) is a projection from Bτ onto Bτ ∩ Aτ(θ ) . If x ∈ B+
τ , then

(qti − qti−1 )x = (qti − qti−1 )x(qti − qti−1 ) ≥ 0, so

Eτ (θ)x =
n∑

i=1

(qti − qti−1 )Eti x =
n∑

i=1

Eti ((qti − qti−1 )x) ≥ 0,

thus Eτ (θ) is positive. Since Eτ (θ)1 = 1, we infer that ‖Eτ (θ)‖ = 1, and by virtue of
[Stratila, 1981, Theorem 9.1, p. 116], Eτ (θ) is a conditional expectation. We have(

Eτ (θ)x
)
� = Mτ(θ ) (x�), x ∈ Bτ .

Put

xθ = Eτ (θ)x.

Then {xθ } is a bounded net of elements in A, and for each x ′ ∈ A′

xθ (x ′�) = x ′(xθ�) = x ′(
Eτ (θ)x

)
� = x ′Mτ (θ)(x�) → x ′Mτ (x�).

Thus the net {xθ } converges on the dense subspace A′� of H, and since
‖xθ‖ ≤ ‖x‖, it follows that {xθ } converges in the strong operator topology on
A, consequently, there is y ∈ A such that xθ → y strongly.

Let

Eτ x = y = lim
θ

xθ = lim
θ

Eτ (θ)x, x ∈ Bτ .

Clearly, Eτ is a linear positive map on Bτ , such that

(Eτ x)� = Mτ (x�), x ∈ Bτ .

Since Eτ 1 = 1, we have ‖Eτ‖ = 1. For any partition θ and x ∈ Bτ ,

Eτ (θ)(Eτ x)� = Mτ (θ)((Eτ x)�) = Mτ (θ)Mτ (x�) = Mτ (x�) = (Eτ x)�,

showing that Eτ (θ)Eτ = Eτ , since � is separating.
Accordingly, Eτ x ∈ Aτ (θ) for each θ , and it follows that Eτ x ∈ ⋂

θ Aτ (θ) = Aτ .
Furthermore, if x ∈ Aτ , then Eτ (θ)x = x for each θ , so

Eτ x = lim
θ

Eτ (θ)x = x,

which means that Eτ is a projection onto Aτ , and thus a conditional expectation.
From the equality

ω ◦ Eτ (θ) = ω,
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we obtain

ω ◦ Eτ = ω,

which, since Eτ is positive, implies faithfulness and normality of Eτ .

Let us observe that in an entirely analogous way we can obtain a correspond-
ing result for the time projection Mτ (u).

Indeed, putting

Bτ (u) = {x ∈ A : foreach t ≤ u xqt = qtx}
Aτ (u) = {x ∈ A : foreach t ≤ u xqt = qtx ∈ At },

we get that Mτ (u)|Bτ (u) is a conditional expectation onto qu Aτ (u)qu.
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